Description: Solar Flare Magnetic Fields and Plasmas by Yuhong Fan, George Fisher This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Suns atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Suns magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield. Dick has been making profound contributions to these areas of research over a long and productive scientific career. Many of the articles in this topical issue were first presented as talks during this workshop and represent substantial original work. The workshop was held 9 – 11 August 2010, at the Center Green campus of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. This volume is aimed at researchers and graduate students active in solar physics, solar-terrestrial physics and magneto-hydrodynamics. Previously published in Solar Physics journal, Vol. 277/1, 2012. FORMAT Paperback LANGUAGE English CONDITION Brand New Back Cover This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Suns atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Suns magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield. Dick has been making profound contributions to these areas of research over a long and productive scientific career. Many of the articles in this topical issue were first presented as talks during this workshop and represent substantial original work. The workshop was held 9 - 11 August 2010, at the Center Green campus of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. This volume is aimed at researchers and graduate students active in solar physics, solar-terrestrial physics and magneto-hydrodynamics. Previously published in Solar Physics journal, Vol. 277/1, 2012. Author Biography Yuhong Fan is currently a senior scientist at the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR) in Boulder, Colorado. She received a B.Sc. in Space Physics from Peking University, China, in 1989, and a Ph.D in Astronomy from the Institute for Astronomy at the University of Hawaii in 1993. She did her postdoctoral research at the National Solar Observatory in Tucson and at the Joint Institute of Laboratory Astrophysics, University of Colorado at Boulder. She joined the scientific staff of HAO/NCAR in 1998. Dr. Fans research has focused on MHD modeling of the generation and rise of magnetic fields in the solar interior, the emergence of active region flux tubes into the solar atmosphere and the evolution of the coronal magnetic fields that result in flares and coronal mass ejections. She has also worked on helioseismic investigation of solar subsurface meridional flows and the interaction between solar p-mode waves and sunspots. She has published 55 refereed articles with total citations of over 2000. She received the Donald E. Billings Award in Astro-Geophysics Research for her doctoral thesis research, and currently serves as the secretary of the Solar Physics Division of the American Astronomical Society. George H. Fisher received his Ph.D in Physics in 1984 from UC San Diego. He has worked in the field of Solar Physics for the past 27 years, specializing initially in the areas of magnetohydrodynamics in the solar interior and gas dynamics and radiation processes in the solar atmosphere. Later, he worked on the dynamics of magnetic fields in the solar interior with colleagues Yuhong Fan, Dana Loncope, Mark Linton, Bill Abbett and others. His recent interests include determining flow-fields and electric fields in the solar atmosphere from magnetic field observations. Dr. Fisher is the head of the Solar Physics Theory group at the Space Sciences Laboratory at the University of California, Berkeley, whichcurrently consists of five full-time scientists and a postdoctoral fellow. Table of Contents Efficient Techniques for Radiation Transfer in Three-Dimensional MHD Models.- Radiative Cooling in MHD Models of the Quiet Sun Convection Zone and Corona.- Understanding Flare Radiation Processes.- Global Forces and Momenta During Solar Flare Energy Release.- The Evolution of Sunspot Magnetic Fields Associated with a Solar Flare.- Global Forces in Eruptive Solar Flares.- Data Analysis and Theory for Analysis of Vector Magnetogram Data.- Modeling and Interpreting the Effects of Spatial Resolution on Solar Magnetic Field Maps.- Magnetic Connectivity Between Active Regions 10987, 10988, 10989 by Means of Nonlinear Force-Free Field Extrapolation.- Magnetic Energy Storage and Current Density Distributions for Different Force-Free Models.- Connections Between Magnetic Topology in the Solar Atmosphere and Eruptive Flares and CMEs.- Predictions of Energy and Helicity in Four Major Eruptive Solar Flares. Feature Presents new and unique applications of vector magnetogram observations for understanding energy transport and transient forces that occur during solar flares Includes unique new observations of stellar flare data and attempts to apply them to solar flare observations Proposes a critical new analysis of the effects of finite resolution in solar magnetic field maps and shows how finite resolution affects inversions of the magnetic structure of the solar atmosphere Details ISBN1489999159 Year 2014 ISBN-10 1489999159 ISBN-13 9781489999153 Format Paperback Publication Date 2014-05-08 Short Title SOLAR FLARE MAGNETIC FIELDS & Language English Media Book Edition 2012th Imprint Springer-Verlag New York Inc. Place of Publication New York Country of Publication United States Edited by George Fisher Illustrations VIII, 204 p. Pages 204 AU Release Date 2014-05-08 NZ Release Date 2014-05-08 US Release Date 2014-05-08 UK Release Date 2014-05-08 Author George Fisher Publisher Springer-Verlag New York Inc. Edition Description 2012 ed. Alternative 9781461437604 DEWEY 538.4072 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:130977743;
Price: 217.11 AUD
Location: Melbourne
End Time: 2025-02-04T19:52:01.000Z
Shipping Cost: 9.46 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9781489999153
Book Title: Solar Flare Magnetic Fields and Plasmas
Number of Pages: 204 Pages
Language: English
Publication Name: Solar Flare Magnetic Fields and Plasmas
Publisher: Springer-Verlag New York Inc.
Publication Year: 2014
Subject: Engineering & Technology, Physics
Item Height: 235 mm
Item Weight: 332 g
Type: Textbook
Author: George Fisher, Yuhong Fan
Item Width: 155 mm
Format: Paperback