Description: With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production. Authors Yaron Haviv and Noah Gift take a production-first approach. Rather than beginning with the ML model, you'll learn how to design a continuous operational pipeline, while making sure that various components and practices can map into it. By automating as many components as possible, and making the process fast and repeatable, your pipeline can scale to match your organization's needs. You'll learn how to provide rapid business value while answering dynamic MLOps requirements. This book will help you: Learn the MLOps process, including its technological and business value Build and structure effective MLOps pipelines Efficiently scale MLOps across your organization Explore common MLOps use cases Build MLOps pipelines for hybrid deployments, real-time predictions, and composite AI Learn how to prepare for and adapt to the future of MLOps Effectively use pre-trained models like HuggingFace and OpenAI to complement your MLOps strategy
Price: 64.96 USD
Location: East Hanover, NJ
End Time: 2024-11-30T11:43:06.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 60 Days
Refund will be given as: Money back or replacement (buyer's choice)
Return policy details:
EAN: 9781098136581
UPC: 9781098136581
ISBN: 9781098136581
MPN: N/A
Book Title: Implementing MLOps in the Enterprise: A Production
Number of Pages: 377 Pages
Language: English
Publication Name: Implementing Mlops in the Enterprise : a Production-First Approach
Publisher: O'reilly Media, Incorporated
Publication Year: 2024
Item Height: 0.9 in
Subject: Machine Theory, Enterprise Applications / Business Intelligence Tools, Intelligence (Ai) & Semantics, Natural Language Processing, Neural Networks, Computer Vision & Pattern Recognition
Type: Textbook
Item Weight: 22.6 Oz
Subject Area: Computers
Item Length: 9.1 in
Author: Noah Gift, Yaron Haviv
Item Width: 7 in
Format: Trade Paperback