Citronic

Geometric Integrators for Differential Equations with Highly Oscillatory

Description: The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions. 1 Oscillation-preserving integrators for highly oscillatory systems of second-order ODEs2 Continuous-stage ERKN integrators for second-order ODEs with highly oscillatory solutions3 Stability and convergence analysis of ERKN integrators for second-order ODEs with highly oscillatory solutions4 Functionally-fitted energy-preserving integrators for Poisson systems 5 Exponential collocation methods for conservative or dissipative systems 6 Volume-preserving exponential integrators 7 Global error bounds of one-stage explicit ERKN integrators for semilinear wave equations 8 Linearly-fitted conservative (dissipative) schemes for nonlinear wave equations9 Energy-preserving schemes for high-dimensional nonlinear KG equations 10 High-order symmetric Birkhoff-Hermite time integrators for semilinear KG equations 11 Symplectic approximations for efficiently solving semilinear KG equations12 Continuous-stage leap-frog schemes for semilinear Hamiltonian wave equations13 Semi-analytical ERKN integrators for solving high-dimensional nonlinear wave equations 14 Long-time momentum and actions behaviour of energy-preserving methods for wave equations

Price: 261 AUD

Location: Hillsdale, NSW

End Time: 2025-01-05T05:35:09.000Z

Shipping Cost: 30.96 AUD

Product Images

Geometric Integrators for Differential Equations with Highly OscillatoryGeometric Integrators for Differential Equations with Highly Oscillatory

Item Specifics

Return shipping will be paid by: Buyer

Returns Accepted: Returns Accepted

Item must be returned within: 60 Days

Return policy details:

EAN: 9789811601460

UPC: 9789811601460

ISBN: 9789811601460

MPN: N/A

Book Title: Geometric Integrators for Differential Equations w

Item Length: 23.4 cm

Number of Pages: 499 Pages

Language: English

Publication Name: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Publisher: Springer Verlag, Singapore

Publication Year: 2021

Subject: Mathematics

Item Height: 235 mm

Item Weight: 939 g

Type: Textbook

Author: Xinyuan Wu, Bin Wang

Subject Area: Mechanical Engineering

Item Width: 155 mm

Format: Hardcover

Recommended

Geometric Integrators for Differential Equations with Highly Oscillatory
Geometric Integrators for Differential Equations with Highly Oscillatory

$162.26

View Details
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio

$147.10

View Details
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio

$115.06

View Details
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio

$115.25

View Details
Wu - Geometric Integrators for Differential Equations with Highly Osci - T555z
Wu - Geometric Integrators for Differential Equations with Highly Osci - T555z

$186.31

View Details
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio

$113.27

View Details
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio
Geometric Integrators for Differential Equations with Highly Oscillatory Solutio

$158.59

View Details
Wu - Geometric Integrators for Differential Equations with Highly Osc - S9000z
Wu - Geometric Integrators for Differential Equations with Highly Osc - S9000z

$133.93

View Details
Wu - Geometric Integrators for Differential Equations with Highly Osc - T9000z
Wu - Geometric Integrators for Differential Equations with Highly Osc - T9000z

$155.52

View Details